AIR HANDLING UNITS WITH HEAT RECOVERY

Series VUT PE EC

Series
VUT PW EC

Ceiling mounted energy saving Air Handling Units (AHU) with the air capacity up to **4000 m³/h** and the heat exchanger efficiency up to 90% in the sound- and heat-insulated casing with the electric heater.

Ceiling mounted Energy saving Air Handling Units (AHU) with the air capacity up to **3800 m³/h** and the heat exchanger efficiency up to 90% in the sound- and heat-insulated casing with the water heater.

Description

Air handling unit VUT PE EC with the electric heater and VUT PW EC with the water heating coils are the complete ventilation units designed to provide both both supply and exhaust ventilation with air filtration and extract air removal. The exhaust air energy is used to heat up the supply fresh air through the plate heat exchanger.

Designed for ventilation and conditioning systems for various premises requiring economic solution and controllable air exchange. EC-motors reduce energy consumption by 1.5-3 times and ensure high efficiency and low noise level at the same time. All the models are compatible with 160 (150), 200, 250, 315 μ 400 mm round ducts.

Modifications

VUT PE EC – models with the electric heater. **VUT PW EC** – models with water heating coils.

Casing

The casing is made of aluzink with 20 mm mineral

wool internal heat and sound-insulating layer for VUT PE/PW 350, 600, 1000 units and 50 mm for VUT PE/PW 200, 3000 units.

Filter

Two incorporated G4 panel filters for supply and extract air ventilation are supplied with the unit.

Motor

VUT PE/PW EC units are equipped with exhaust and supply fans with backward curved blades powered by energy-saving direct current Electronically Commutated (EC) motors. These motors give up to 50% energy consumption economy as compared to standard AC motors. EC motors have built-in thermal overheating protection with automatic restart and enable smooth speed regulation from 0 to 100%. The ball bearings used with the EC motors are designed for at least 40 000 hours operation and are maintenance-free. Premium efficiency reaching 90% is an absolute privilege of the electronically commutated motor

Heat exchanger

VUT 350, 600 and 1000 models are fitted with the counter-flow heat recovery element made of polystyrene. VUT 2000 and 3000 models are manufactured with the cross-flow air-to-air plate heat exchanger made of aluminum. All the units are equipped with the drain pan for condensate drainage.

Heater

The units are supplied with the water coils (VUT PW) or electric heater (VUT PE). If the external temperature is too low and/or heat energy transfer from the exhaust air is insufficient to heat up the supply air to the required temperature, the heater is turned automatically on. The control system regulates the heating power to keep the indoor temperature as set up by the user.

Automation

The unit is equipped with the built-in automation system with multifunctional control panel and graphic LCD indicator. The standard delivery set includes 10 m

Mech-Elec[®]

wire for connection to the control panel. To prevent the heat exchanger freezing the icing electronic protection is applied. It includes the by-pass damper and the heater. The by-pass damper is opened as the temperature sensor requires to let the air flow pass through the heat exchanger through the bypass duct. During the heat exchanger defrost cycle the supply air is warmed up in the heater up to the required temperature. During the defrosting process the warm exhaust air warms the heat exchanger. After that the by-pass damper closes again, the heater is switched off, supply air warms up again through the heat exchanger and the unit continues operating under rated conditions.

VUT PE (EC) control and protection functions

- safe start-up and shutdown of the unit;
- setting and maintaining the desired temperature of the supply air with the control panel;
- motor speed control and regulation of the unit air
- capacity accordingly by means of the control panel; control of the external intake and exhaust air damper actuators;
- working-out the required patterns while the unit start-up and shutdown;

Unit overall dimensions:

programming daily and weekly schedules by user;

active electric heating elements overheating protection;

- disabling electric heater operation when the motor is not running;
- two thermostats for electric heater over-heating protection;

 automatic switch ensuring the short circuit protection of the automation system;

controlling filter clogging.

General description of VUT PW (EC) control system

The unit is equipped with the built-in automatic control and monitoring system.

The control unit performs the following functions: Safe start-up and shutdown of the unit;

 supply air temperature control by means of actuating three-way valve regulating the feed of the heat medium into the water coils;

 water (glycol) heating coils freezing protection as the leaving air temperature and leaving heat medium temperature sensors require;

- control of the heat exchanger by-pass actuator;
- control of the of external circulation pump

installed on the heat medium entering into the water coils;

- heat exchanger freezing protection;
- control of the supply and exhaust fans;
- air clogging control according to engine hours;

 control of the external intake and exhaust air damper actuators.

Air handling unit is equipped with the remote control panel that provides:

- starting-up/shutdown of the ventilation unit;
- setting the required air flow;
- setting the required supply air temperature;
- displaying the temperature in the room;
- ▶ failure (emergency) alarm indication.

Mounting

Air handling unit is suspended to the ceiling. The unit can be mounted either in service spaces or in main premises above the suspended ceiling, in the pocket or the unit can be placed directly in the room. Mounting in any position shall provide the correct condensate drainage. Access for the unit maintenance and filter cleaning shall be provided through the side panels.

Туре	Dimensions, [mm]										Figure	
	ØD	В	B1	B2	B3	B4	Н	H1	L	L1	L2	Nº
VUT 350 PE EC	160	485	415	596	132,5	220	285	130	1238	1286	948	1
VUT 600 PE EC	199	827	711	-	294	345	283	120	1238	1286	-	2
VUT 1000 PE EC	249	1350	1215	607,5	430	655	317	143	1346	1395	-	2
VUT 2000 PE EC	314	1050	915	457,5	247	575	750	375	1360	1408	-	2
VUT 3000 PE EC	399	1265	1130	565	297	632,5	830	415	1595	1643	-	2
VUT 600 PW EC	199	827	711	-	294	345	283	120	1238	1286	-	2
VUT 1000 PW EC	249	1350	1215	607,5	430	655	317	143	1346	1395	-	2
VUT 2000 PW EC	314	1050	915	457,5	247	575	750	375	1360	1408	-	2
VUT 3000 PW EC	399	1265	1130	565	297	632,5	830	415	1595	1643	-	2

VENTS VUT 350 PE EC

AIR HANDLING UNITS WITH HEAT RECOVERY

Technical data:

	VUT 350 PE EC	VUT 600 PE EC	VUT 600 PW EC			
Unit supply voltage [V / 50 Hz]	1~ 230	1~ 230				
Maximum fan power [W]	2pcs. x 51	2pcs. x 51 2pcs. x 100				
Fan current [A] (Supply voltage of the fan with EC motor)	2pcs. x 1,2 (48V)	2pcs. x 2,4 (48V)				
Electric heater capacity [kW]	1,5	2,0	-			
Electric heater current [A]	6,5	8,7	-			
Number of water (glycol) coil rows	-	-	2			
Total power of the unit [kW]	1,502	2,20	0,20			
Total current of the unit [A]	7,05	9,76	1,06			
Air capacity [m³/h]	400	700	600			
RPM	2950	3150				
Noise level at 3m [dB[A]]	48	5	3			
Operating temperature [°C]	-25 up to +40	-25 up	to +60			
Casing material	aluzink	aluzink				
Insulation	20 mm mineral wool	20 mm mineral wool				
Filter: exhaust	G4	G4				
intake	G4	G4				
Duct connection diameter, [mm]	Ø 160 (150)*	Ø 200				
Weight, [kg]	65	75	77			
Recuperation efficiency	up to 90%	up to 90%				
Heat exchanger type	counter-flow	counter-flow				
Heat exchanger material	polystyrene	polystyrene				

 * in case of reducer Ø 160/150 mm.

Technical data:

	VUT 1000 PE EC	VUT 1000 PW EC	VUT 2000 PE EC	VUT 2000 PW EC	
Unit supply voltage [V / 50 Hz]	1~1	230	3~ 400	1~ 230	
Maximum fan power [W]	2pcs.	x 135	2pcs. x 420		
Fan current [A] (Supply voltage of the fan with EC motor)	2pcs. x 2	2,8 (48V)	2pcs. x 2,5 (230V)		
Electric heater capacity [kW]	3,3	-	12,0	-	
Electric heater current [A]	14,3	-	17,4	-	
Number of water (glycol) coil rows	-	4	-	2	
Total power of the unit [kW]	3,57	0,27	12,84	0,84	
Total current of the unit [A]	15,53	1,23	22,4	5	
Air capacity [m³/h]	1100	1000	2000	1950	
RPM	26	45	2920		
Noise level at 3m [dB[A]]	5	2	5	8	
Operating temperature [°C]	-25 up	to +60	-25 up	to +40	
Casing material	aluz	zink	aluzink		
Insulation	20 mm mi	neral wool	50 mm mineral wool		
Filter: exhaust	G	4	G4		
intake	G	4	G4		
Duct connection diameter, [mm]	Ø 2	50	Ø315		
Weight, [kg]	95 98		190 194		
Recuperation efficiency	up to	90%	up to 75%		
Heat exchanger type	counte	er-flow	cross-flow		
Heat exchanger material	polyst	yrene	aluminum		

Technical data:

	VUT 3000 PE EC	VUT 3000 PW EC				
Unit supply voltage [V / 50 Hz]	3~ 400					
Maximum fan power [W]	2pcs. x 990					
Fan current [A] (Supply voltage of the fan with EC motor)	2pcs. x 1,7 (400V)					
Electric heater capacity [kW]	21,0	-				
Electric heater current [A]	30,0	-				
Number of water (glycol) coil rows	-	2				
Total power of the unit [kW]	23,0	1,99				
Total current of the unit [A]	33,4	3,4				
Air capacity [m³/h]	4000	3800				
RPM	2580					
Noise level at 3m [dB[A]]	5	59				
Operating temperature [°C]	-25 up	to +50				
Casing material	aluzink					
Insulation	50 mm mineral wool					
Filter: exhaust	G4					
intake	G4					
Duct connection diameter, [mm]	ØZ	400				
Weight, [kg]	290	295				
Recuperation efficiency	up to	0 75%				
Heat exchanger type	cross-flow					
Heat exchanger material	alum	linum				

Accessories to air handling units:

Turpo	Replaceable filter						
туре	Intake (pocket type)	Exhaust (panel type)					
VUT 350 PE EC	SFK 350 PE G4	SF 350 PE G4					
VUT 600 PE EC	SFK 600 PE/PW G4	SF 600 PE/PW G4					
VUT 1000 PE EC	SFK 1000 PE/PW G4	SF 1000 PE/PW G4					
VUT 2000 PE EC	SF 2000 PE/PW G4						
VUT 3000 PE EC	SF 3000 PE/PW G4						
VUT 600 PW EC	SFK 600 PE/PW G4	SF 600 PE/PW G4					
VUT 1000 PW EC	SFK 1000 PE/PW G4	SF 1000 PE/PW G4					
VUT 2000 PW EC	SF 2000 I	PE/PW G4					
VUT 3000 PW EC	SF 3000 I	PE/PW G4					

Mech-Elec[®]

VUT PW EC

VUT 600 PW EC

AIR HANDLING UNITS WITH HEAT RECOVERY

dB(A)

Sound-power level	Octave-frequency band [Hz]									
	Hz	Tot.	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dB(A)	67	68	67	67	66	59	61	61	56
L _{wA} to outlet	dB(A)	69	70	71	68	66	66	64	59	58
L _{wA} to environment	dB(A)	47	58	52	47	53	40	41	35	35

Mech-Elec®

AIR HANDLING UNIT WITH VUT PE EC HEAT RECOVERY SERIES PW EC

 72
 69
 63

 77
 76
 73

74

L_{wA} to inlet

L_{wA} to outlet L_{wA} to environment

dB(A)

dB(A)

dB(A)

87 83

dB(A)

AIR HANDLING UNITS WITH HEAT RECOVERY

Hot water coil parameters:

How to use water heater diagrams

System Parameters: Air flow = 400 m³/h. Outside air temperature =-20°C. Water temperature (in/out) = 70/50 °C. Supply air temperature, prolong the line of air flow (e.g., 400 m³/h) ① up to the point where it crosses the outside air temperature (blue curve, e.g. -20°C); then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+23°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. -20°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature (e.g., 70/50 °C), from the point where it crosses the outside air temperature (e.g. -20°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature (e.g., 70/50 °C), from there draw a vertical line ⑤ up to the scale representing the heating coil capacity (6.6 kW).
Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.105 l/s).
Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (8.5 kPa).

How to use water heater diagrams

Air Speed. Starting from 950 m³/h on the air flow scale draw a vertical line \mathbb{O} till the air speed axis which makes about 3.35 m/s.

Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -15°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+23°C).

• Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -15°C) and draw a horizontal line ④ from this point to the right to the intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line (5) up to the scale of heating coil capacity (13.5 kW).
Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (0.14 l/s).
Water pressure drop. Draw the line (7) from the point where line (6) crosses the black curve to the pressure drop axis. (1.5 kPa).

Mech-Elec

Hot water coil parameters:

How to use water heater diagrams

System Parameters: Air flow = 1450 m³/h. Outside air temperature = .25°C. Water temperature (in/out) = 70/50 °C. Air Speed. Starting from 1450 m³/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.2 m/s.

- Supply air temperature. prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve, e.g. -25°C); then draw a horizontal line 🛈 from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line 3 to the supply air temperature axis on top of the graphic (+28°C).
- = Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. 25°C, red curve) and draw a horizontal line 🛈 from this point to the right until it crosses water in/out temperature curve (e.g., 70/50 °C), from here draw a vertical line [©] up to the scale representing the heating coil capacity (31.0 kW).
 Water flow. Prolong the line [©] down to water flow axis at the bottom of the graphic [©] (0.38 l/s).
 Water pressure drop. Draw the line [©] from the point where the line [©] crosses the black curve to the pressure drop axis. (9.8 kPa).

How to use water heater diagrams

System Parameters: Air flow = 3500 m³/h. Outside air temperature =-10°C. Water temperature (in/out) = 90/70 °C.

Air Speed. Starting from 3500 m³/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 4.65 m/s.

Supply air temperature, prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve, e.g. -10°C); then draw a horizontal line 🖉 from this point to the left till crossing water

A supply an temperature, protong the line (0) up to the point where it closes the obtained in temperature (bug cut e, e, 9, -10 c), then draw a horizontal line (0) the form this point to the right until it closes water in/out temperature (e.g. 90/70 *C). From this point draw a vertical line (0) to the supply air temperature (e.g. -10*C, red curve) and draw a horizontal line (0) to the right until it crosses water in/out temperature curve (e.g., 90/70 *C), from this point to the right until it crosses water in/out temperature curve (e.g., 90/70 *C). From this point to the right until it crosses water in/out temperature curve (e.g., 90/70 *C).
Water flow. Prolong the line (0) down to water flow axis at the bottom of the graphic (6) (0.5 l/s).
Water pressure drop. Draw the line (7) from the point where the line (6) crosses the black curve to the pressure drop axis. (6.5 kPa).